Contents

Editorial: In with the new 1

Application of virus filters to biological products: practical and regulatory considerations
*P Roberts 3

Optical Inspection and Integrity Testing of Ampoules and Vials
*Dr H Weindorf 11

Effects of temperature stress on the glass quality of ampoules for parenteral drug production
*K Lorenzen, T Pracht, M Jahnke 13

Dates for your diary 20

Index to Volume 4, 1999 22

Book Reviews 25

Instructions for authors in this issue page 24

Contents and Abstract

Application of virus filters to biological products: practical and regulatory considerations*

Peter Roberts
*R&D Virology Project Leader, Bio Products Laboratory, Elstree, Herts, UK

The transmission of viruses is a risk associated with the use of plasma- or cell-culture derived therapeutic products. Recently filters have been developed with a pore-size small enough to remove viruses. The application of such filters for increasing virus safety is considered from both a practical and a regulatory perspective.
Optical inspection and integrity testing of ampoules and vials

Dr. Herbert Weindorf
Boehringer Ingelheim Pharma KG, GMP Service, Ingelheim, Germany

A practical, reliable and economical method of validating sophisticated optical control equipment is described. The method relies on hand-made challenge kits, prepared using appropriate methods of current AQL (acceptable quality level) lists such as Military Standard 105E or DIN ISO 2859.

Correspondence: Dr Herbert Weindorf, Boehringer Ingelheim Pharma KG, GMP Service-Operative Quality Assurance Unit of Pharmaceutical Production, Binger Str., D-55216 Ingelheim/Rh., Germany. Tel: (+49) 6132 773771, fax: (+49) 6132 772945

Effects of temperature stress on the glass quality of ampoules for parenteral drug production

Lorenzen, K,* Pracht, T** and Jahnke, M *
* Pharma Hameln GmbH, Hameln, Germany
** Chassot AG, Belp, Switzerland

Type I glass ampoules intended for the filling of Water for Injection USP were exposed to a combination of extended dry heat sterilisation/depyrogenation processes with or without steam autoclave cycles and the effects of the various treatments on pH and conductivity of Water for Injection investigated. Tests on product quality revealed that pH and conductivity increase depending on the time and temperature of pre- and post-processing of the empty ampoule and the finished product, respectively. The final pH and conductivity of Water for Injection is the result of an interaction between glass ampoules and the product solution. The present study shows that the exposure time of empty ampoules to the heating zone of a depyrogenation and sterilising tunnel and the temperature in the heating zone can vary within wide limits without affecting the quality of Water for Injection in the filled ampoules.
Compared to the average exposure time of 10–14 minutes in the validated standard run, which ensures at least a three log reduction in endotoxins, the time in the heating zone could be increased threefold and the heating temperature varied by more than 30°C above or below the validated standard run, without affecting conductivity or pH of the product solution. However, repetition of standard autoclaving cycles (121°C for 15 minutes), with a prolonged exposure to high temperature during product sterilisation had considerable effects on the investigated parameters of the product solution, expressed as an increase in conductivity and pH.

Corresponding author: Dr M. Jahnke, Head of the Department of Microbiology, Quality Control and Quality Assurance, Pharma Hameln GmbH, Langes Feld 13, 31789 Hameln, Germany
Contents

Editorial: Bang and Whimper 27

Documentation for technical premises in pharmaceutical production
S Schenderlein and J Urban 29

Comparative testing for pyrogens in parenteral drugs using the human whole blood pyrogen test, the rabbit in vivo pyrogen test and the LAL test
M Jahnke, M Weigand and H-G Sonntag 39

Review Article: A modular approach to clean environment design
C Hale 45

Dates for your diary 48

Book Reviews 50

Instructions for authors in this issue page 47

Contents and Abstract

Documentation for technical premises in pharmaceutical production

Experiences of the use of photogrammetry and computer-aided design

Stefan Schenderlein*, Jens Urban**
* Ferring GmbH, Kiel
** itap GmbH, Teichstraße 2, 06231 Bad Dürrenberg

The first step in creating up-to-date documentation in pharmaceutical production is to capture "as-built" status; photogrammetrical mapping is a particularly effective method. Using a CAD-system (CAD = Computer Aided Design), recorded data are transformed into a three-dimensional model of all the supply systems. This model provides an up-to-date basis for
reconstruction plans at all times, and also facilitates efficient documentation management. The value of the documentation system has already been confirmed in inspections by the German authorities and the FDA (Food and Drug Administration). It was successfully used to demonstrate that technical premises meet GMP/cGMP standards.

Corresponding author: Jens Urban, itap GmbH, Teichstraße 2, 06231 Bad Dürrenberg Tel.: 00 49 (0)3462 81559 Fax: 00 49 (0) 3462 81568

Comparative testing for pyrogens in parenteral drugs using the human whole blood pyrogen test, the rabbit in vivo pyrogen test and the LAL test

M. Jahnke*, M. Weigand**, H.-G. Sonntag**
* Pharma Hameln GmbH, Microbiology Department, Langes Feld 13, 31789 Hameln, Germany
** Institute of Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany

In the present study, the human whole blood test PyroCheck® has been compared with the LAL test and the in vivo rabbit method for pyrogen testing of parenteral pharmaceuticals. The basic methods and strategies for ensuring the quality of the testing procedure are described.

The human whole blood test provides several advantages compared to the established methods according to pharmacopoeial requirements. The test detects not only fever-inducing endotoxins of gram-negative bacterial origin, but also those of gram-positive origin, as well as other components potentially inducing fever in the human body.

Comparison with the rabbit in vivo pyrogen test and the LAL test showed that the commercially available PyroCheck® assay is of practical use to the
pharmaceutical industry, providing usable results and enabling pyrogen testing of drugs that cannot be tested using the standard methods.

Die Methode zur Prüfung von parenteralen Arzneimitteln auf fiebererregende Verunreinigungen im humanen Vollblutmodell bietet mehrere Vorteile gegenüber den derzeit etablierten Methoden. So werden nicht nur fiebererregende Substanzen bakteriellen Ursprungs gram-negativer Spezies detektiert sondern auch jene gram-positiver Spezies sowie weitere Komponenten, die im menschlichen Organismus eine Immunantwort auslösen würden.

Im Vergleich zu den etablierten Prüfmethoden des LAL- Tests und des in vivo Pyrogentests werden mit dem kommerziell erhältlichen humanen Vollbluttest PyroCheck® einerseits gleichwertige Resultate erzielt, wobei Arzneimittel, die in den etablierten Tests nicht prüfbar sind, nunmehr auf Pyrogene überprüft werden können.

Corresponding author: Dr. Michael Jahnke, Pharma Hameln GmbH, Microbiology Department, Langes Feld 13, D-31789 Hameln, Germany Tel: +49 (0) 5151 581 283 Fax: +49 (0) 5151 581 258 Email: m.jahnke@pharma-hameln.de

Review Article

A modular approach to clean environment design

Chris Hale
Design Director, MSS Clean Technology, York, UK

The pharmaceutical industry worldwide has changed considerably over the past five to ten years. Mergers, consolidation and legislative pressure have combined to create an environment within which expenditure is more closely scrutinised than ever. Recent mergers have also given rise to an intense period of operational review with each and every facility within the new business structures being thoroughly analysed and assessed. On top of this, the time period within which companies can maximise the return on research investment has shrunk, putting them under increased pressure to get new products to market quickly. This tough environment has a significant impact on new projects.
Corresponding author: Chris Hale, Design Director, MSS Cleanroom Technology Ltd, Frederick House, Fulford Road, York, YO10 4EG. Tel: 01904 610 643. Fax: 01904 660 595.
Contents

Editorial: Further into Europe 53

Evaluation of cleanroom garments in a dispersal chamber – some observations
B Reinmüller and B Ljungqvist 55

Automated integrity testing of hydrophobic filters based on water intrusion measurements: comparative analysis of a refilling continuous-flow and a pressure-decay batch device
P Czermak and G Catapano 59

Cytotoxic pharmaceutical isolators – air flow smoke visualisation testing of a negative pressure isolator
SA Burnett 65

OPINION PAPER
Microbiological leak test of supply pipes for pharmaceutical process water
M Jahnke 75

Dates for your diary 79

Contents and Abstract

Evaluation of cleanroom garments in a dispersal chamber – some observations*

Berit Reinmüller and Bengt Ljungqvist
Building Services Engineering, KTH, Stockholm, Sweden

A newly designed dispersal chamber has been installed at KTH, division of Building Services Engineering. Preliminary tests and comparative studies have been performed in the dispersal chamber on selected clothing systems. The results show the relevance of dispersal chamber testing in the evaluation of cleanroom garments.
Automated integrity testing of hydrophobic filters based on water intrusion measurements: comparative analysis of a refilling continuous-flow and a pressure-decay batch device

Peter Czermak1, Gerardo Catapano2
1Institute of Biochemical Engineering and Membrane Technology, Department KMUB - Biotechnology, University of Applied Sciences Giessen and Biotechnologie Gesellschaft Mittelhessen mbH, Giessen, Germany
2Department of Chemical and Materials Engineering, University of Calabria, Arcavacata di Rende (CS), Italy

The water intrusion test (WIT) has become a routine procedure in the pharmaceutical industry as a tool for the in situ integrity testing of hydrophobic filters. During the test, the filter housing is submerged with water and automated devices provide an estimate of the evaporated water flow rate across the filter, i.e., water intrusion rate (WIR). WIR is generally correlated to the filter’s bacterial retention rate. Commercially available WIT devices differ with regard to the technique used to measure WIR. In this paper, we investigated the capacity of a pressure-decay batch device and a refilling continuous-flow device to provide reliable measurements of WIR at various WIRs and initial gas volumes above the filter. Experiments were performed with a model filter system simulating typical conditions of WITs and with a full-scale commercial filter. The pressure-decay batch device consistently underestimated the actual WIR. The error increased with decreasing initial gas volumes above the filter and with increasing actual WIRs. Measured WIR values were as much as 25% and 31% lower than the actual WIR for the model filter system and the full-scale filter, respectively. The refilling continuous-flow device yielded WIR measures in excellent agreement with the actual WIRs with both the model filter system and the full-scale filter, independently of the WIR value and the initial gas volume above the filter.

Der Wasser-Intrusions-Test (WIT) hat sich in der pharmazeutischen Industrie als Routinetest zur in-situ Integritätsprüfung hydrophober Filter etabliert. Während des Testes wird das Filtergehäuse mit Wasser gefüllt und...
automatisierte Geräte liefern eine Bestimmung des Wasserdampfflusses über den Filter, die Wasser-Intrusions-Rate (WIR). Die WIR wird im allgemeinen mit der Bakterien-Rückhalterate des Filters korreliert. Kommerziell erhältliche Geräte zur Durchführung des WIT unterscheiden sich in der Technik, um die WIR zu messen.

Corresponding author: Prof. Dr.-Ing. Peter Czermak, University of Applied Sciences, Institute of Biochemical Engineering and Membrane Technology, Department KMUB – Biotechnology, Wiesenstrasse 14, D – 35390 Giessen, Germany Tel: +49 641 309 2513 Fax: +49 641 309 2914 e-mail: Peter.Czermak@tg.fh-giessen.de

Cytotoxic pharmaceutical isolators – air flow smoke visualisation testing of a negative pressure isolator

S. A. Burnett, BEng (Hons). Teaching Company Associate. University of Portsmouth, UK and Gravatom Engineering Systems Ltd. Bishops Waltham, UK.

Air flowing into the working zone of a negative pressure isolator may be unidirectional, turbulent, or a combination of both. Which air flow technique to use has long been an issue of the pharmaceutical industry and isolator manufacturers. Increased concern is due mainly to the rising demand for drug preparation in a more controlled environment such as an isolator. Since unidirectional flow (UDF) systems have proved successful in the cleanroom industry, a system is being developed to model the UDF patterns that occur using different extract systems. Three experimental extract models were used to identify effective ways of keeping UDF without compromising the air
change rate. The results will be used for the further development of the
design of negative pressure isolators.

Corresponding author: SA Burnett, BEng (Hons), Project Manager –
OEM/IA, Gravatom Engineering Systems Ltd., William Kelvin Building,
Claylands Road, Bishops Waltham, Hampshire, England SO32 1BH
Tel: +44 (0) 1489 896010/897300; fax: +44 (0) 1489 894382;
email: Sales@Gravatom.com; Website: www.gravatom.com

Opinion Paper

Microbiological leak test of supply pipes for pharmaceutical
process water

Dr Michael Jahnke
Head of Microbiology, Pharma Hameln GmbH, Hameln, Germany

In order to ensure that the pharmaceutically relevant properties for high-
purity process water are maintained, supply pipes for purified water (Aqua
purificata) and water for injection (WFI) must be proof against the entry of
contaminants of both chemical (e.g. those due to air contamination) and
microbiological origin. A microbiological experiment was performed to
examine the integrity of a stainless steel one-way/dead-leg supply pipe with
junctions and terminal outlet. The distribution system was filled with nutrient
medium, and at least three outlets of the pipe were sampled per day
throughout the seven-day experiment. None of the outlet valves showed any
contamination. Thus, the pipe remained sterile after being filled with culture
medium which is easily accessible to a broad range of microorganisms. The
sampling outlet valves facilitate aseptic withdrawal of contents from the pipe,
so that neither pipe nor outlets showed any leakages or biofilms.

Um die pharmazeutisch relevanten Parameter für hochreines
Prozesswasser kontinuierlich einhalten zu können, müssen die
Verteilungssysteme für Reinstwasser (Aqua purificata) und Wasser für
Injektionszwecke (WFI) widerstandsfähig gegen chemische oder mikrobielle
Kontaminationen sein. Es wird ein mikrobiologische Experiment
beschrieben, mit dessen Hilfe die Dichtigkeit eines Stichleitungssystemes
zur Verteilung von WFI und der installierten Entnahmeventile demonstriert
wird.
Über einen Zeitraum von 7 Tagen wurden täglich dreimal aseptische
Manipulationen, d.h. Entnahmen aus dem Verteilungssystem, an einem mit
sterilem Nährmedium gefüllten Stichleitungsstrang vorgenommen. Das
Nährmedium verblieb über den gesamten Zeitraum steril, was als Indiz dafür
zu werten ist, dass die Entnahmeventile mikrobiologisch dicht schließen und der Verteilungsstrang keinerlei mikrobiologische Ablagerungen aufwies.

Corresponding author: Dr. Michael Jahnke, Pharma Hameln GmbH, Head of Microbiology, Langes Feld 13, D-31789 Hameln, Germany. Tel: 00 49 5151 581 283 Fax: 00 49 5151 581 258 e-mail m.jahnke@pharma-hameln.de
Contents

Editorial: The stuff of myth and legend 81

Validation papers:
Validation – An historical perspective
J Sharp 83

Process validation: regulatory compliance or effective production management?
KL Stoddart 87

Analytical method validation
Dr M Cope 93

Review of validation of cleaning and disinfection
MC Olver 97

Software contamination control
– A challenge for the 21st century
K Mendis 101

Validation project management
A Da Silva 105

Other paper:
The application of steam quality test limits
K Shuttleworth 111

Dates for your diary 117

Letter to the editor/book review 118

Instructions for authors in this issue

Contents and Abstract

Validation – An historical perspective

John Sharp
Consultant, Woodley, Berkshire, UK
We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable rights, that among these are life, liberty and the pursuit of happiness. (Thomas Jefferson, 1743-1826, slave owner)

Corresponding author: John Sharp, Consultant, Mill Close, Sandford Manor, Woodley, Berks RG5 4SY, UK. Tel: +44 (0) 118 944 1994 Fax: +44 (0) 118 944 1994

Process validation: regulatory compliance or effective production management?

Karen L Stoddart
Celltech Chiroscience plc, Slough, UK

Process Validation is a regulatory requirement. As part of Good Manufacturing Practice (cGMP), it supports the intention of ensuring that an Active Pharmaceutical Ingredient (of either chemical synthesis or cell culture / fermentation origin), or formulated Drug Product, meets the requirements for quality and purity which it purports or is represented to possess. From a regulatory perspective, process validation is described as being “the documented evidence which provides a high degree of assurance that a specific process will consistently produce a product meeting its predetermined specifications and quality characteristics”1. Therefore, provided the pharmaceutical industry establishes a process validation programme which adequately considers all the elements described in the comprehensive regulatory guides, the pharmaceutical industry will have adequately achieved its goal of regulatory compliance and conformance...

Several years ago, this philosophy of equating quality with “conformance to specifications” survived. In today’s market, pharmaceutical companies must embrace a new quality culture aligned to business goals. This culture adopts a philosophy of strategic quality management and performance improvement and, if designed appropriately, process validation in its broadest context is part of this new philosophy. Through Process Control, industry benefits from a reduction in product failure and rejection (Cost of Non-Conformance) and an improvement in product yield and process cycle-time. If considered appropriately, industry also benefits from a reduction in in-process and / or finished product testing (Cost of Conformance) by ensuring a “level of control” appropriate for intended purpose.

Process validation therefore offers the pharmaceutical industry an opportunity to strive towards its goal of profitability and marketability. To ensure success, however, the path to process validation requires a full understanding of the ultimate objective and must start during the stages of
Product Development when a product moves out of the “Proof of Principle” phase and into the “Full Product Development” phase, i.e. at a time in the development programme when phase IIa clinical studies are completing and phase IIb/III clinical studies are being planned.

Corresponding author: Karen Stoddart, Celltech Chiroscience plc, Granta Park, Great Abington, Cambridgeshire CB1 6GS. Tel: +44 (0) 1223 896300 Fax: +44 (0) 1223 896400. e-mail: karenstoddart@chiroscience.com

Analytical method validation

Dr. Mike Cope
Boehringer Ingelheim Limited, Bracknell, UK

Analytical Method Validation is a requirement of the ICH Quality Guidelines (Q2A and Q2B). Guideline Q2A discusses the characteristics that should be considered when validating an analytical method. Guideline Q2B provides guidance and recommendations on the methodology of validation of analytical procedures. The objective of validation of an analytical method is to demonstrate that it is suitable for its intended purpose (e.g. identification, assay, dissolution, degradate/impurity determination).

Corresponding author: Dr Mike Cope, Analytical Development Manager, UDV Development Department, Boehringer Ingelheim, Ellesfield Avenue, Bracknell, Berkshire, RG12 8YS, UK.
e-mail: copem@bra.boehringer-ingelheim.com

Review of validation of cleaning and disinfection

Malcolm C Olver
Site Validation Manager, GlaxoWellcome, Ware, UK

Cleaning validation is the demonstration of the reproducibility of a cleaning procedure to meet pre-determined scientifically valid limits. The purpose of cleaning is to eliminate, as far as is practically possible, any potential risk to the patient arising from cross-contamination or microbiological contamination of the product. The regulatory view is that the manufacturing company is responsible for using its knowledge of the safety of its products and processes and of the potential risk to the patient in order to set appropriate limits.
Software contamination control – A challenge for the 21st century

Ken Mendis
Manager, Software Quality Assurance, Software Safety Assurance, Roche Carolina Inc., Florence, South Carolina, USA

Contaminated software is software that could contain inaccurate data, errors or bugs, or that has been infected with a virus. The use of contaminated software could result in the adulteration of the final product or possibly cause death, injury, or the loss of property.

Validation project management

Alfred Da Silva
Washington Group International, New Malden, Surrey, UK

Good effective project management is crucial to executing a project and bringing it to successful completion within the scheduled timeframe and within budget. There are several factors that can influence the project to either progress and succeed, or decline and fail. A methodical and logical approach is required to address these factors. A well-executed project is one where the approach has a sound and firm infrastructure in place, which provides the basis for successful execution of the project. This infrastructure is discussed in this article.

The application of steam quality test limits

Keith Shuttleworth
Senior Consultant, Keith Shuttleworth & Associates Ltd
Steam quality testing, once the sole preserve of the British National Health Service, is being adopted within the pharmaceutical industry on an increasing scale. The perceived need for such tests varies from company to company and country to country. The purpose of this paper is to relate the impact of poor quality steam to the pharmaceutical sterilisation processes and consider the validity of the test frequencies and limits generally applied.

Corresponding author: Keith Shuttleworth, Senior Consultant, Keith Shuttleworth & Associates Ltd. Laburnum Cottage, Eastbury, Near Hungerford, Berkshire RG17 7JN, UK. Tel/Fax: +44 (0) 1488 71734 email: ksa@ksapharma.com